
IOURNAL OF COMPUTATIONAL PHYSICS 63, 85-106 (1986) 

The Random Choice Method 
Applied to Two-Dimensional 

Shock Focusing and Diffraction 

H. OLIVIER AND H. GR~~NIG 

Stosswellenlabor, Rheinisch- WestfXsche Technische Hochschule Aachen, 
Templergraben 55, Aachen 5100, West German? 

Received June 6, 1984; revised February 15, 1985 

After a brief introduction to the Random Choice Method (RCM) of one space dimension 
and a short discussion of some of its essential features an application to two space dimensions 
is made, based on an operator splitting technique proposed by Chorin. To show the influence 
of the random number generators, results are presented using both a generator proposed by 
Chorin and that of van der Corput. As a numerical test problem, the shock focusing by a con- 
cave reflector is calculated. The numerical results are compared with experimental ones. For 
the first time the agreement between the numerical and experimental results is quite good 
using the RCM in two space dimensions. Furthermore the application of the RCM to shock 
diffraction at a 90” corner is shown. These results are also compared with experimental 
ones. g? 1986 Academic Press, Inc. 

1. INTRODUCTION 

During the past years several numerical methods have been applied to the 
solution of flow problems in unsteady gas dynamics involving shock and rarefaction 
waves and contact surfaces. These methods are usually based on finite-difference 
schemes. Unfortunately most of these methods produce oscillations behind discon- 
tinuities, and due to numerical diffusion low resolution results are obtained in con- 
tinuous parts of the flow. 

The development of the one-dimensional RCM by Glimm (5), Chorin (1 ), and 
Sod (9) has made it possible to overcome the difficulties caused by numerical 
oscillation and diffusion. This method was first used by Glimm (5) as part of a 
proof of existence of solutions to systems of nonlinear hyperbolic conservation 
equations. Chorin (1, 2) applied the RCM to problems of gas dynamics giving a 
short introduction to its application to multidimensional problems. Based on this 
concept, this method is applied to two-dimensional problems in this paper. 
Although one computes solutions on a grid with Glimm’s method it does not 
represent a difference method, which usually computes a weighted sum to obtain 
the value of the solution at a specific grid point. The RCM samples values from an 
explicit wave solution. Due to this sampling in one space dimension no smoothing 
of discontinuities appears. 
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The advantages of the one-dimensional RCM in comparison with finite difference 
methods are: 

(i) Discontinuities as shocks or contact surfaces are computed without 
numerical diffusion and dispersion. 

(ii) There are no numerical oscillations behind discontinuities. 
(iii) Boundary conditions are readily handled. 

The disadvantages of the RCM in comparison with finite difference methods are: 

(i) Due to the randomness the profile of a rarefaction wave is not computed 
smooth but on the average very close to the exact solution. 

(ii) The locations of discontinuities at any time are not exact, however, their 
average positions are. 

The main attention in this paper is drawn to the application of the RCM to flow 
problems in two space variables. Since the two-dimensional method is based on the 
one-dimensional, in Section 2 an outline of the RCM in one space dimension is 
presented. The solution of the inherent Riemann problem and the sampling 
procedure are not described, since those may be found in Chorin’s papers (1,2) and 
other literature concerning the RCM (3, 7,9). 

In Section 3 the application to two space variables is shown. In Section 4 two 
families of random number generators are introduced. Some statistical quantities of 
these generators are compared. In Section 5 calculations are shown, which are com- 
pared with experimental results. The numerical results are discussed with respect to 
different conditions like different number of grid points, different random number 
generators, or different determination of the passive velocities. 

2. RCM FOR ONE SPACE DIMENSION 

2.1. General description of RCM 

The equations for an inviscid, non-heat-conducting, one-dimensional flow may be 
written in the following form (1): 

w, + F( W), = 0, (2.1) 

where 

t 

P 
w= m 

e i 

m 

F(W)= m’/p+p 

de +pYP 

(2.2) 
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FIG. 1. Grid configuration in one space dimension. 

m = pu indicates the momentum per unit volume with the density p and the velocity 
U. The total energy per unit volume e may be written as 

with internal energy E. 

e=pe+$p u2 (2.3) 

At and Ax are time and spatial increments of the used grid. One wishes to obtain 
solutions at the grid points (iAx, ndt). Of course the method produces no exact 
solutions but only approximate ones WY. The solution of the vector W(iAx, ndt) is 
then approximated by w;z W(iAx, ndt) and analogous w::$: z W( (i + l/2) Ax, 
(n + l/2) At). The task is to compute the solution wyz,:i, if w; and WY+, are given. 
This problem can be solved if the initial data are given in the following way: 

W(x, ndt) = wr+ ” 
x>(i+ l/2) Ax 

WY, x<(i+ l/2) Ax. 
(2.4) 

With (2.4) one sees, that the initial data are piecewise constant and discontinuous 
(see Fig. 1). Equation (2.1) together with (2.4) describes a Riemann problem; x is a 
spatial coordinate, which starts from every grid point (see Fig. 1). In the (x, t) plane 
the solution of the Riemann problem yields up to four regions, in which W(x, t) is 
constant (Fig. 2). These four regions are connected by three waves: a backward and 
forward facing wave, i.e., either a shock or an expansion wave, and a contact dis- 
continuity. The contact discontinuity divides S, into two regions with different den- 
sities Pan, Pan and specific heat ratios y,, yr. The values of U* and p.+ are equal 
across the contact surface. 

FIG. 2. Riemann problem (c = contact surface). 
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The solution of the Riemann problem is characterized by W(x, t). Let 6, be a 
value of the random variable 8 equidistributed in [-l/2, l/2]. Then w;z,‘/$ is 
defined by the solution of the Riemann problem at a point {(i+ l/2 + 0,) Ax, 
(n + l/2) At}, i.e., 

WY=;/; = W{ (i + l/2 + 0,) Ax, (n + l/2 At}. (2.5) 

Equation (2.5) is the essence of the RCM. This procedure is shown in Fig. 3 
graphically. P indicates the sampling point. It is important, that the waves from 
adjacent Riemann problems do not intersect, otherwise the described method yields 
no correct solution. A condition on At which guarantees no wave intersection is the 
Courant-Friedrichs-Lewy condition 

At=oAx/s~p(~u~~ +cy) (2.6) 

with 

ci is the sound speed and u; the fluid velocity at a grid point i. Godunov’s iterative 
method to solve the Riemann problem and the sampling procedure can be found in 
Chorin’s papers (1, 2). 

hl)At 

FIG. 3. Sampling procedure and grid configuration. 
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2.2. Boundary Conditions 

To satisfy the solid-wall boundary conditions (Fig. 4) at time ndt the following 
conditions are imposed on a pseudo left grid point 

P/=PrY 

PI= Pr, 

u[= -lA r2 

YI= Yr. (2.8) 

Since in the second half-step the solution is sampled between the points i+ l/2 and 
i- l/2 one needs no boundary conditions. Only in the first step they are imposed. 
In this manner waves can be reflected at a solid boundary. 

3. RCM FOR Two SPACE DIMENSIONS 

Chorin (1) proposed a method for computing multidimensional unsteady com- 
pressible flows using Glimm’s method by means of operator splitting. The equations 
of motion for an inviscid, non-heat-conducting fluid in two space dimensions are 

Pr + (PU), + (PU), = 0, 

(PU), + (PU2 + PL + b4?. = 07 

(PU), + (w), + CPU’ + PI.,. = 0, 

e, + ((e +p) ~1, + ((e +p) 01,. = 0, 

(3.la) 

(3.lb) 

(3.lc) 

(3.ld) 

with u and u representing the x and y component of the velocity. The energy per 
volume e can be expressed as 

(3.2) 

3 nbt 
r 

i-l i i+l 

FIG. 4. Treatment of boundaries. 



90 OLIVIER AND GRijNIG 

with the internal energy for an ideal gas 

1 P EC-------. 
Y-lP 

(3.3) 

The basic procedure is the use of Glimm’s algorithm as a building block in a frac- 
tional step method. At each time-step four quarter-steps are performed; each quar- 
ter-step represents a sweep in either the x or y direction. When (3.1) is written for 
y = const (x sweep) 

Pr + (PUL = 02 (3.4a) 

(PI, + w +p), = 0, (3.4b) 

(PUL + (PUU), = 02 (3.4c) 

e, + ((e +p) u), = 0, (3.4d) 

and similar for x=const., one sees that these two systems of differential equations 
are coupled by u and v. 

Using (3.4a), (3.4~) can be written in the following form: 

u,+uu,=o. (3.5) 

Equation (3.5) says that in the x sweep u is transported as a passive scalar along the 
characteristic u. So we have a tool to determine the passive velocities. In the follow- 
ing “passive velocity” describes the component of the velocity which is normal to 
the computational direction, i.e., during the computation in the x direction (x 
sweep) o is the passive velocity and during the computation in the y direction (y 
sweep) u is the passive velocity. Using (3.5) we take u = u, (y component of the 
velocity at the left grid point) when the sampling point is to the left of the contact 
surface and V= v, when the sampling point is to the right of the contact surface for 
example during an x sweep, where U indicates the sampled solution of the velocity 
in the y direction of the Riemann problem. 

At each partial step, the solution vector is approximated by a piecewise constant 
vector. In the x sweeps the resulting waves in the x direction are found using the 
one-dimensional method as described in Section 2. In the y sweeps the waves in the 
y direction are found again with the one-dimensional method but with u replaced 
by v. 

The remaining task is to combine the fractional steps in such a way that in the 
mean the interaction of the x and y waves is properly accounted for. This is done in 
the following way (Chorin (1)). At the beginning of the time step p, p, u, u, and y 
are known at points (idx,jdx) (Fig. 5). Then a first x sweep computes the solutions 
at points (i+ l/2) Ax for all i. These solutions are used as initial data for the first y 
sweep. One obtains the solutions at points marked by 0 (Fig. 5). After the first y 
sweep the first half time-step is finished. The duration of the first half time-step is 
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1. A I. 7--T-7--+J+~ J+2 o--x--o o--x--o 
first step, x-sweep; 
x: solution of the 
first step 

second step, y-sweep; 
0: solution of the 
second step 

third Step, x-sweep; 
0: solution of the 
third step 

fourth step, y-sweep; 
0: solution of the 
fourth step 

FIG. 5. Grid configuration. First step, x sweep; (x) solution of the first step. Second step; y sweep; 
(0) solution of the second step. Third step, x sweep; (0 ) solution of the third step. Fourth step, y sweep; 
(0) solution of the fourth step. 

determined at the beginning of the first x sweep by (2.6). The y sweep is 
simultaneous to the former x sweep. At the beginning of the third step again (2.6) is 
used to determine the duration of the second half time-step. As initial conditions the 
solutions of the second step are used. The second x sweep or third step yields the 
solution at points (j+ l/2) dx for all i. After the last step, an y sweep, the solution 
at the grid points (idx,jdx) is obtained. 

4. USED RANDOM NUMBER GENERATORS 

Chorin (1) proposed a random number generator which works with a standard 
deviation reduction technique as follows. Let ‘m,, m, > m, be two mutually prime 
integers. Consider the sequence of integers 

fli+l = (m, + ni) (mod m2) 

with given no < m,. oi is a pseudo random number equidistributed over 
[ - l/2, l/2] as uniform as possible. This random number is usually generated by a 
computer-installed subroutine. Then a modified sequence f3; of random numbers is 
used 

O:=((ni+Bi+t)/m,)-4. (4.1) 

Chorin (1) mentioned, that the standard deviation of the shock position is propor- 
tional to (l/m,) . ‘I2 For m2 -+ cc the standard deviation would become zero. But 
furthermore Chorin (1) mentioned that m, cannot be made too large, otherwise it 
introduces a systematical error into the calculation. Colella (3) used a general form 
of the van der Corput random generator. Let k, , k, > 0 be integers, k, > k, 
relatively prime. The (k,, k2) van der Corput sampling sequence ai is given by 

m 

ai= 1 q,,k-(‘+l), 
I=0 

(4.2) 
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where 
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q,=bn, (mod k,) and f n,ki = i. 
/=O 

Equation (4.2) gives a distribution in the range [O, 11. 
It is very difficult to make qualitative statements of the random number 

generators without using physical test problems. However, there are a few statistical 
qualities which allow a first assessment. These qualities, for example, are the 
arithmetical mean value, the standard deviation, and the so-called “chi-square” 
statistic. In the following examples the random numbers are equidistributed in the 
range [0, 11. The arithmetical mean value of optimal equidistributed random num- 
bers in the range [0, l] is 0.5. The standard deviation is computed by 

(T= 
J 

(l/(N-1)) i (xi-$ 
r=l 

if 

,f=- l fxt N;=j 

(4.3) 

(4.4) 

is the arithmetical mean value and N random numbers are used in this test. The 
“chi-square” statistic gives a statement of the distribution of the random numbers. 
To compute the “chi-square” statistic the range [0, l] is devided into k subinter- 
vals. Then the quantity of random numbers n, is investigated, which fall into each 
subinterval, if N random numbers are considered in this test. Let p,, be the 
possibility that each random number falls into a subinterval, then the expected 
quantity of subinterval s is p,N. The “chi-square” statistic is formed as follows: 

u2 = i (ns-P,N2 
r 

s=l PJ’ ’ 
(4.5) 

Of course, the theoretical distribution is approximated well by the random 
generator if Uf is small. In this way the distribution of random numbers can be 
compared by (4.5). The generator with the smallest value Uf has the best dis- 
tribution. In the following these three test quantities have been applied to Chorin’s 
and van der Corput’s generator. There were 200 random numbers used, and the 
range [0, l] was divided into k = 20 subintervals. Table I gives the obtained results. 

The best arithmetical mean value gives Chorin’s generator m, = 3, m2 = 7, n, = 5 
with IX-O.51 = 2 x 10P4. The smallest standard deviation is obtained by Chorin’s 
generator m, = 2, m2 = 3, no = 2, and the smallest “chi-square” statistic by van der 
Corput’s generator k, = 5, k, = 3 and lJz = 0.8. In Section 5 several numerical 
solutions are compared which have been obtained with different random 
generators. 
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TABLE1 

Statistical Quantities of Several Random Number Generators 

Chorin’s generator (WI,, WI,) 

(12) (2,3) (1,3) (1s) (3,7) (3,5) (7,ll) 
no=2 no=2 no=2 n,=2 no= 5 no = 5 no=2 

0.5122 
16.39 
26.2 

0.4933 0.4906 0.506 0.4998 
16.17 17.12 16.25 16.85 
19.0 18.8 21.4 16.8 

van der Corput’s generator (k,, k,) 

0.497 1 0.5009 
16.37 16.92 
19.0 6.0 

(-Ll) (3,2) (3,l) (5%1) (723) (5>3) (lL7) 

w 0.4946 0.4967 0.4946 0.4937 0.4997 0.496 0.499 1 
16.6 16.48 16.5 16.64 16.55 16.63 16.53 
1.5 1.0 1.0 2.6 1.0 0.8 1.0 

5. NUMERICAL EXAMPLES 

In this Section the numerical results of two shock propagation problems are dis- 
cussed and compared with experimental results. The first problem is the focusing of 
a plane shock wave by a parabolic reflector and the second the diffraction of a 
plane shock wave at a 90” corner. Both numerical calculations were made in two 
space dimensions. Regarding the focusing problem, the influence of the number of 
grid points, the passive velocities and the used random generator on the numerical 
solution are studied. All calculations were performed for air with y = 1.4. 

5.1. Focusing of Shock Waves 

The numerical results are compared with experiments which were carried out by 
Sturtevant and Kulkarny (12). In the calculations their reflector no. 1 is used, a 
parabolic cylinder with a width of 20.32 cm, radius Rmin = 6.03 cm and angle of 
convergence a = 160” (Sturtevant, Kulkarny (12)). To compare the quality of the 
numerical results, pressure histories are calculated for the same four locations close 
to the reflector as given in the paper of Sturtevant and Kulkarny (12); the exact 
location of the pressure probes were based on an information of Sturtevant (11). 
According to this the probes closest to the focus are located in a cross section 
3.2 mm downstream of the geometrical focus. The Mach number of the incident 
shock is 1.1. In the numerical calculations the shape of the reflector is approximated 
by a stepwise wall to apply the simple boundary conditions of (2.8). Because the 
considered flow problem is symmetrical, only the upper halfplane of the flow field is 
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computed. At the reflector boundary and at the axis of symmetry the reflection 
technique of (2.8) is applied. At the other boundaries of the grid no reflection is 
assumed. 

51.1. Influence of the number of grid points. In these examples Chorin’s generator 
is used with m, = 3, m2 = 7, and n, = 5; the values of m, and m, are proposed by 
Chorin (1). Fig. 6 shows the pressure field before, at the moment of and after 
focusing. The shape of one half of the reflector cuts off part of the left portion of the 
grid with a nonreflecting flow region above. The vertical line in Fig. 6 indicates the 
geometrical focus. These pressure fields are quite similar for all mesh variations. In 
Fig. 7-9 the calculated pressure histories are compared with the experimental ones 
of Sturtevant and Kulkarny (12). The solid curves represent the measured 
pressures, the dotted ones the calculations. For location 2, closest to the focus, the 
maximum measured and calculated pressure are indicated on the diagrams. Since 

FIG. 6. Pressure lield before, at and after focusing. 
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LocatIon 1 
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Mnr -' 

Locution 2 

d 

FIG. 7. Pressure histories for a 90 x 90 mesh. Scales: 0.4 atm/division; 0.05 ms/division. 

the measured maximum pressure could not be directly read from the oscillograms 
this value was obtained from Fig. 9 of Sturtevant and Kulkarny (12) leading 
probably to a slight uncertainty. Due to the random character of the numerical 
method the maximum calculated pressure close to the focus shows some scattering 
depending on the grid size, random number generator, etc. Fig. 7 shows the 
pressure histories for a 90 x 90 grid. Figures 8 and 9 show examples for location 1 
calculated with a 100 x 100 and a 75 x 75 grid, respectively. Of course, the solutions 
for the 100 x 100 grid are the best but there is no big difference with the 90 x 90 ver- 

- Experiment 

Pressure history for a 100 x 100 mesh. Scales: 0.4 atm/division; 0.05 ms/division. FIG. 8. 

581/63/i-7 
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- Experiment 

Random Choice Solutnx 

FIG. 9. Pressure history for a 75 x 75 mesh. Scales: 0.4 atm/division; 0.05 ms/division. 

sion. So the convergence of the solution is very good using such a grid or a similar 
grid. One reason for the pressure fluctuations in the field behind the reflected shock 
is due to the stepwise approach of the reflector shape. Another reason is due to the 
error arising from the operator splitting technique (Colella (3)). These fluctuations 
are also seen in the pressure histories as scattering. However, the average of the 
numerical results agrees very well with the experimental ones. Figure 6 and also the 
pressure histories in Figs. 7-9 exhibit a certain waviness which adds to the random 
fluctuations. Though these waves have not been studied in detail so far, we have the 
impression that they show a similar qualitative behaviour as those similarly curved 
waves in Sturtevant’s and Kulkarny’s shadowgraphs (12, Fig. 3). 

5.1.2. Znji’uence of the passive velocities. In Section 3.1 the passive velocities are 
defined as those velocities which are normal to the computing direction, i.e., v and u 
are the passive velocities during an x and y sweep, respectively. Considering the first 
computation step, x sweep, one finds the solutions at grid points ((i+ l/2) dx,jdx), 
see Fig. 5. Since the computation step was in the x direction, the solution at the 
grid points ((i+ l/2 dx,jdx) gives only U, the velocity in the x direction. In the 
second step, y sweep, one needs the velocities in the y direction at the grid points 
((i+ l/2 dx,jdx) as initial conditions (Fig. 5). As mentioned before at these grid 
points only the velocities in the x direction are determined. There are several ver- 
sions to determine the v components at the grid points ((i+ l/2) Ax,,jAx). These LI 

components are the passive velocities of the first step, x sweep. The same problems 
arise during the third and fourth step. Based on Chorin’s concept, see (3.5) Colella 
(3) suggested determining the passive velocity dependent on the location of the con- 
tact surface and sampling point. If X, = U* At indicates the location of the contact 
surface and xi the position of the sampling point, then 

IlAl 
V”d’ 

'(i+ 1/2)A.x,/Ax = 
(,+ l)Ar.~Ar, .x, 3 x* 

vn~r 
IA x, /Ax ) x,<x*. 

(5.1) 

Equation (5.1) is valid for x sweeps. In y sweeps, v is to be replaced by U. This 
technique was used in all examples except that shown in Fig. 10. All calculations in 
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FIG. 10. Pressure field at several moments of focusing using (5.2) and (5.3) 

this section are made with a 90 x 90 mesh to save computing time. A second techni- 
que determines the passive velocities by averaging. After the first step, x sweep, the 
velocities in the y direction at the grid points ((i+ l/2) dx,jdx) are determined as 
follows: 

u1+ ,,2, j = f w, I,, + qj1. (5.2) 

After the second step, y sweep, the velocities in x direction at the grid points 
((i+ l/2) Ax, (j+ l/2) d ) x are determined in the following way (see Fig. 5) 

‘Y+ I/Z,J+ l/2 = t(‘Y+ l/2, j+ 1 + 'Y+ */2, j). (5.3) 

Because of the averaging a gentle smoothing occurs in contrast to the other techni- 
que (Fig. 10). Figure 11 shows the pressure histories for this version. As one sees the 
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pressure at the focus is not attenuated and broadened. Furthermore, the following 
rarefaction wave agrees well with the experiment. But at the other locations of the 
flow field the first method produces more accurate profiles (see Fig. 7). However, 
this example shows that due to (5.2) and (5.3) the fluctuations in the flow field are 
reduced effectively. Perhaps due to another weighted mean as in (5.2) and (5.3) the 
errors occurring in the pressure histories (Fig. 11) may be further reduced. But until 
this is found the first version described in this section seems to yield the best results 
(see Fig. 7). 

5.1.3. Influence of used random generators. Figure 12a shows the pressure field 
which is obtained by the van der Coput generator with k, = 2 and k2 = 1, shortened 
(2, 1). One sees that this generator produces numerical instabilities. These 
instabilities arise at the reflector boundary and sometime later they influence the 
whole flow field. Fig. 12b shows the same situation using the (2, 1) van der Corput 
generator, but now at all points where reflection occurs the sampling point 0d.x is 
set equal zero, i.e., the sampling point coincides exactly with the boundary (see 
Fig. 4). If the usual boundary conditions (2.8) are imposed and the sampling point 
occurs anywhere else than in the fan the state S, or S, represents the solution for 
the grid point ((i- l/2) AX, (n + l/2) At) (see Fig. 4). This solution S, or S, may 

a / 1 - ExDenment 

FIG. 11. Pressure histories obtained by using (5.2) and (5.3). Scales: 0.4 atm/division; 
0.05 ms/division. 
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7 

FIG. 12. Pressure field (a) using (2,l) van der Corput generator, (b) using (2, 1) van der Corpur 
generator with sampling point at the boundary (Q Ax = 0). 

yield a finite particle velocity u, or u,, i.e., at the boundary a finite particle velocity 
occurs. Physically this is not possible. If the sampling point 8. Ax is set equal to 
zero at solid boundaries we always sample in the fan and the solution consists of 
state S,. In this case the fluid velocity is u* equal zero. Due to this procedure the 
instabilities are quite decreased as one notices comparing Figs. 12a and b. Although 
the instabilities could not be suppressed completely using the (2, 1) van der Corput 
generator the used procedure is an effective tool to improve the results obtained 
with other generators. In the one-dimensional case, however, using the same (2, 1) 
van der Corput generator the flow field is completely free of instabilities (Sommer- 
feld (10)). 

Colella (4) proposed a van der Corput generator with (3,2) for the x sweeps and 
with (5, 3) for the y sweeps. These generators were applied to obtain the results 
shown in Fig. 13. Without smoothing technique this combination produces 
instabilities similar to those of the (2, 1) van der Corput generator. In Fig. 13a the 
beginning of the instabilities can be seen. Figure 13b shows the pressure history at 
location 1. Using all tested van der Corput generators without smoothing technique 
in the two-dimensional shock focusing calculations no acceptable results could be 
obtained. 

Contrary to Colella in the preceding examples only one random number for an x 
and y sweep was used and apparantly this procedure gives better results than 
Colella’s technique. An obvious explanation for this assumption may be the 
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Locatfon I 

FIG. 13. Numerical results obtained by using van der Corput’s (3, 2) and (5, 3) generators. 

following. The propagation of a shock in the real flow field is approximated 
numerically by a propagation in the x and in the J! direction. Of course, these two 
propagations in the x and y directions belong physically together. So they must 
have the same probability of propagation. This is ensured, when using the same 
random number for an x and y sweep. 

Based on the preceding examples and other test calculations with different ran- 
dom generators it seems that the “chi-square” statistic (see Table I) has no impor- 
tant influence on the results. Chorin’s generator with a relatively high “chi-square” 
statistic gives better results than the van der Corput generator with a “better” “chi- 
square” statistic. 

The standard deviation alone is also no statistical quantity which allows a selec- 
tion between good and bad generators. This can be seen from the following exam- 
ple. Table I shows that Chorin’s generator with m, = 2, m2 = 3, and n, = 2 has the 
smallest standard deviation with ET = 16.17. This generator was used with a 
100 x 100 mesh, and Fig. 14 shows the obtained pressure history. The same example 
with the same mesh is shown in Fig. 8, where Chorin’s generator with m, = 3, 
m2 = 7, and n,= 5 is used. All other parameters are the same. Comparing the 
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pressure histories of Figs. 14 and 8 one finds that the first example with the larger 
standard deviation gives a better approximation to the experimental results than 
the example with the smallest standard deviation. 

It is interesting to note that Chorin’s generator with m, = 3, m, = 7, and n, = 5 
gives the best arithmetical mean value and that this generator yields good results 
(see Figs. 779). It seems that the arithmetical mean value is a very important 
statistical quantity to find good generators, but certainly it is not the only one. 

Until now it is not known which combination of statistical quantities has to be 
used to find the best random generator for two-dimensional problems. A further 
interesting point is that several random generators are good for calculations in one 
space dimension but produce instabilities in more than one space dimensions, like 
the (2, 1) van der Corput generator. This requires further investigations. 

5.2. Numerical Study qf the Shape of a Diffracted Shock Wave 

In this section the diffraction of a shock wave at a 90” corner is considered. The 
results are obtained with the same method described in Section 3. Furthermore only 
one random number is used for both x and y sweep. These random numbers are 
obtained by Chorin’s generator. Figure 15a shows the pressure distribution in a 
channel with the 90” branch. At the left end the pressure jump of the incident shock 
is seen. The incident shock runs from left to right. The cross section of the branch 
and the channel is approximated by 20 grid points. Figure 15b shows the pressure 
field after the shock has reached the branch. 

One sees the diffracted shock which propagates into the branch and circular 
rarefaction waves propagating upstream. In this example the Mach number of the 
incident shock is M, = 1.12. In the next frame the diffracted shock has passed the 
opposite corner. A reflected shock propagates upstream. This reflected shock can be 
seen as a circular wave around the opposite corner. Because the area of the reflected 
shock increases continuously it is considerably attenuated. Thus in the next picture 
(Fig. 15d) it has already vanished. In Fig. 15d one sees also that the diffracted shock 
is almost parallel to the cross section of the branch. 

FIG. 14. Pressure histories obtained by using Chorin’s generator with m, = 2, m, = 3, and q, = 2. 
Scales: 0.4 atm/division; 0,05 ms/division. 



Fw. 15. Channel with a 90”~branch 

Figures i6a-d show the pressure distribution at several. moments of diffraction. 
In Fig 16e the diffracted pseudo-stationary shock wave profile is compared with the 
experimental one found by Skews (8). The Mach number of the incident shock 
wave is M0 = 1.2. Calculations using the same method as described in Section 3 but 
keeping the passive velocities constant show a better agreement between experimen- 
tal and numerical results as shown in Fig. 16e (6). 

Figure 16e shows that in the numerical computation the diffracted shock is in 
general a little quicker than the experimental one. This is expected, since the 
numerical calculation does not include friction. 

The scattering of the numerical results is due to several causes. First, as men- 
tioned in Section 1, due to the randomness the shock position is not exact at any 
time, only the average position is. Furthermore, only 30 grid points are used to 
approximate the cross section of the channel and the branch. The error in the 
location of the shock position is of O(dh-). Thus using more grid points the scatter- 
ing of the numerical results can be reduced efficiently. 

Colella (4) showed that due to the splitting technique errors arise. These errors 
become larger if the obliquity of the waves to the grid is increased. Of course the 
errors due to operator splitting are aiso increased keeping the obliquity constant 
and increasing the Mach number. These errors can be seen as numerical noise. To 
show the limit of computable Mach number to get acceptable results the next 
example shows the shock diffraction with an incident Mach number MO= 1.5. 
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FIG. 16. Numerical example of shock diffraction. 

Figures 17a and b show the pressure field of the diffraction problem. One sees that 
the noise is acceptable until the diffracted shock reflects at the opposite corner of 
the branch. 

In Fig. 18 the comparison between the experimental and numerical pseudo- 
stationary shock wave profile can be seen. It is obviously that the agreement 
between the numerical and experimental results of Fig. 18 is comparable to, if not 
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a b 

FIG. 17. Pressure field at several moments of diffraction, M,, = 1.5 

somewhat better than, the results shown in Fig. 16e. This may be due to the 
following. If the incident Mach number is not big, the errors due to operator 
splitting cause a slight smearing of the diffracted shock (see Fig. 16). The noise is in 
this case not strong. Due to the slight smearing of the diffracted shock, the shock 
position is not exactly defined. Increasing the Mach number the noise becomes 
larger but the diffracted shock becomes steeper (see Fig. 17a), so the shock position 
of the diffracted shock is more exactly defined. 

6. CONCLUSIONS 

In this paper the behaviour of solutions obtained with the RCM is studied vary- 
ing influential parameters of the method. The best results are yielded by using 
Chorin’s random number generator. It is interesting to note that the random num- 
bers produced by Chorin’s generator are not as uniformly distributed as those 
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FIG. 18. Numerical and experimental pseudo-stationary shock wave profile. 
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obtained by van der Corput’s generator. Furthermore the random numbers with 
the slowest standard deviation do not give the best numerical results, as it is shown 
in an example. Thus it seems, that none of these two statistical qualities can be used 
alone to choose a good random number generator for this field. Apparently a group 
of statistical qualities has to be considered together choosing a good generator. An 
explanation of this fact may be the following. In an one-dimensional RCM no 
errors arise due to the numerical method. Errors can only be induced by the choice 
of the random numbers. So the standard deviation is a sufftcient tool to estimate 
the errors of the method. In a two-dimensional RCM which works with an operator 
splitting technique there is one group of errors due to the choice of the random 
numbers and another group of errors due to the splitting technique. So the stan- 
dard deviation alone is not sufficient to choose good random numbers. Perhaps in 
future it may be possible to choose the random numbers in such a way, that the 
errors due to the splitting technique are reduced. With the present method it is not 
possible to compute flows with large Mach numbers, since the errors become unac- 
ceptable (see Sect. 5.2). The scattering of the results can be reduced effectively, if 
after every time step the solution is smoothed by averaging. This should be done 
only in the simple wave region to avoid the smoothing of discontinuities. However, 
due to this smoothing technique a physically existing waviness may be suppressed. 
Therefore in the preceding examples no smoothing technique was applied. An 
example of such a waviness can be seen in Fig. 6. 

The RCM presented for two space dimensions can be extended to three- 
dimensional, rotational symmetrical flow. For example if the flow is rotational sym- 
metrical to the x axis the results of the two-dimensional computation have to be 
modified by using the operator splitting technique for rotational symmetrical flow 
described by Saito and Glass (6) and other authors. Of course the method can be 
extended to arbitrary flows in three space dimensions but in the case of rotational 
symmetry no further mass storage is needed. 

The typical- computing time for the focusing problem is about 1800 set CPU 
using a 90 x 90 mesh and running 200 time-steps. The example of the diffracted 
shock wave needs about 400 set CPU running 100 time-steps. All calculations were 
done on a Cyber 175 computer. 
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